Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sens Actuators B Chem ; 379: 133252, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2165858

ABSTRACT

SARS-CoV-2, a highly transmissible and mutagenic virus, made huge threats to global public health. The detection strategies, which are free from testing site requirements, and the reagents and instruments are portable, are vital for early screening and play a significant role in curbing the spread. This work proposed a silver-coated glass slide (SCGS)/DNA walker based on a dual targets-triggering mechanism, enzyme-catalyzed amplification, and smartphone data analysis, which build a portable visual detection strategy for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. By this method, the detection was reflected by the ultraviolet absorbance changes and visible color changes to the naked eye which was analyzed by Red-Green-Blue (RGB) data analysis via smartphone within 30 min, simplifying the detection process and shortening the detection time. Meanwhile, the dual targets-triggering mechanism and dual signal amplification strategy ensured detection specificity and sensitivity. Further, the practicability was verified by the detection of the real sample which provided this method an application potential in SARS-CoV-2 rapid detection.

2.
Biosens Bioelectron ; 217: 114714, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2031161

ABSTRACT

Timely and accurate detection of virus is crucial for preventing spread of disease and early treatment of the infected cases. Herein we design an integrated logic-operated three-dimensional DNA walker for colorimetric detection of viral RNA fragments, by taking SARS-CoV-2 as an example. The DNA walker is composed of small amounts of dually-blocked walking strands and large amounts of dual-stem-loop track strands on gold nanoparticles. The walking strand contains a swing arm domain and a DNAzyme domain blocked at both sides of catalytic core, while the track strand contains a substrate domain located at the peripheral larger loop. Only the presence of both ORF1ab and N RNA fragments can fully de-block the walking strand, which then continuously hybridizes with track strands and cleaves them by DNAzyme-catalyzed hydrolysis. As the cleavage of track strands from long-stranded, double stem-loop structure to short-stranded, linear sequence, the DNA walker shows much lowered stability due to decreased negative charge density and diminished steric repulsion, which then gets aggregated at high salt concentration, accompanied by a visible color change. The colorimetric DNA walker detects RNA fragments down to 1 nM, responds dual viral genes in a "AND" logic way, and shows high specificity to target sequence. It can further detect large nucleic acids containing ORF1ab and N sequences, and reach 200 copies/mL detection limit by coupling a simple upstream amplification of sample. The method may provide a convenient way for reliable detection of viral RNA.


Subject(s)
Biosensing Techniques , COVID-19 , DNA, Catalytic , Metal Nanoparticles , Biosensing Techniques/methods , Colorimetry/methods , DNA/chemistry , DNA, Catalytic/chemistry , Gold/chemistry , Humans , Limit of Detection , Logic , Metal Nanoparticles/chemistry , RNA, Viral/genetics , SARS-CoV-2
3.
ACS Nano ; 16(3): 4726-4733, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1703529

ABSTRACT

Nucleic acids, including circulating tumor DNA (ctDNA), microRNA, and virus DNA/RNA, have been widely applied as potential disease biomarkers for early clinical diagnosis. In this study, we present a concept of DNA nanostructures transitions for the construction of DNA bipedal walking nanomachine, which integrates dual signal amplification for direct nucleic acid assay. DNA hairpins transition is developed to facilitate the generation of multiple target sequences; meanwhile, the subsequent DNA dumbbell-wheel transition is controlled to achieve the bipedal walker, which cleaves multiple tracks around electrode surface. Through combination of strand displacement reaction and digestion cycles, DNA monolayer at the electrode interface could be engineered and target-induced signal variation is realized. In addition, pH-assisted detachable intermolecular DNA triplex design is utilized for the regeneration of electrochemical biosensor. The high consistency between this work and standard quantitative polymerase chain reaction is validated. Moreover, the feasibilities of this biosensor to detect ctDNA and SARS-CoV-2 RNA in clinical samples are demonstrated with satisfactory accuracy and reliability. Therefore, the proposed approach has great potential applications for nucleic acid based clinical diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , DNA/chemistry , Electrochemical Techniques , Humans , Limit of Detection , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics
4.
Chem Eng J ; 427: 131686, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1347523

ABSTRACT

Fast and effective detection of epidemics is the key to preventing the spread of diseases. In this work, we constructed a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on entropy-driven and bipedal DNA walker cycle amplification strategies for detection of the RNA-dependent RNA polymerase (RdRp) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The entropy-driven cyclic amplification reaction was started by the SARS-CoV-2 RdRp gene to generate a bandage. The bandage could combine with two other single-stranded S1 and S2 to form a bipedal DNA walker to create the following cycle reaction. After the bipedal DNA walker completed the walking process, the hairpin structures at the top of the DNA tetrahedrons (TDNAs) were removed. Subsequently, the PEI-Ru@Ti3C2@AuNPs-S7 probes were used to combine with the excised hairpin part of TDNAs on the surface of Au-g-C3N4, and the signal change was realized employing electrochemiluminescence resonance energy transfer (ECL-RET). By combining entropy-driven and DNA walker cycle amplification strategy, the ratiometric ECL biosensor exhibited a limit of detection (LOD) as low as 7.8 aM for the SARS-CoV-2 RdRp gene. As a result, detecting the SARS-CoV-2 RdRp gene in human serum still possessed high recovery so that the dual-wavelength ratiometer biosensor could be used in early clinical diagnosis.

5.
ACS Appl Mater Interfaces ; 13(17): 19816-19824, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1199255

ABSTRACT

The detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing and controlling infectious diseases and disease treatment. In this work, a Au@Ti3C2@PEI-Ru(dcbpy)32+ nanocomposite-based electrochemiluminescence (ECL) biosensor was rationally designed, which realized sensitive detection of the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2. In addition, a DNA walker was also used to excise the hairpin DNAs under the action of Nb.BbvCI endonuclease. Furthermore, model DNA-Ag nanoclusters (model DNA-AgNCs) were used to quench the initial ECL signal. As a result, the ECL biosensor was used to sensitively detect the SARS-CoV-2 RdRp gene with a detection range of 1 fM to 100 pM and a limit of detection of 0.21 fM. It was indicated that the ECL biosensor had a great application potential for clinical medical detection. Furthermore, the DNA walker amplification also played a reliable candidate strategy for other detection methods.


Subject(s)
Biosensing Techniques/methods , Nanocomposites/chemistry , SARS-CoV-2/genetics , DNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL